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On Active Attack Detection in 
Messaging with Immediate Decryption

● Messaging apps are used by billions daily.
● We consider two-party chats between Alice and Bob.
● The Signal protocol is used by WhatsApp, Signal, …
● The Double Ratchet core offers forward security and post-

compromise security.
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On Active Attack Detection in
Messaging with Immediate Decryption

● The Double Ratchet provides immediate decryption [ACD19].
● On the protocol level, messages can be dropped/reordered 

without stalling future communication.
● Helpful in demanding network settings and for performance.
● [PP22, BRT23, CZ24] (two-party) and MLS (group) also 

consider immediate decryption.
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On Active Attack Detection in 
Messaging with Immediate Decryption

Alice Bob

Recv(ct3)

Send(m2)

Send(m3)

Send(m1)

Recv(ct1)

ct1
ct2

ct3
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On Active Attack Detection in 
Messaging with Immediate Decryption

● We consider an adversary that can compromise parties.
● After compromise, the adversary can trivially impersonate 

them and inject messages.
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On Active Attack Detection in 
Messaging with Immediate Decryption

Alice Bob
Send(m2)

Send(m3)

Send(m1)
ct1

ct2

ct4

ct3

ct5

ct1’

ct2’

ct3’

● In the worst case, the adversary can continue impersonating 
a party forever.
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On Active Attack Detection in
Messaging with Immediate Decryption

● Two main settings: in-band and out-of-band.
● In-band: if a honest message gets through after an active 

attack, detection is possible.
● Out-of-band: authentic, narrowband out-of-band channel 

(e.g. QR code) to detect any attack.
● We focus here on in-band detection.
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r-RECOVER Security (in-order communication) [DV19]

● If Bob receives a forgery, he must stop accepting 
subsequent honest messages from Alice.

Alice Bob

Recv(ct2) →⊥ 

Send(m1)

Send(m2)

Recv(ct1’)ct1

ct2

ct1’
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s-RECOVER Security (in-order communication) [CDV21]

● If Bob receives a forgery, Alice must stop accepting future 
messages from Bob.

Bob

Send(m2)

Send(m1)

 ⊥← Recv(ct2) 

Recv(ct1’)ct1

ct2

Alice
ct1’
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Our Contributions

● Define RECOVER with immediate decryption (RID) notions.
● A first construction satisfying r-RID and s-RID security.
● Linear communication lower bound for r-RID.
● Circumventing the lower bound: optimisations for s-RID.
● [Full paper: Out-of-band constructions with different trade-

offs and security notions.]
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Messaging Primitive

● We assume ordinals of the form num are totally ordered.
● Ordinals in the Double Ratchet [ACD19]: (epoch, index) pair.

Alice Bob

Send(st, ad, pt)  →
(st’, num, ct)

Recv(st, ad, ct) →
 (acc, st’, num, pt) 

(ct, ad)



12

RECOVER with Immediate Decryption (RID) Notions

● Generalises RECOVER notions from [DV19] and [CDV21] to 
the out-of-order setting.

● RID = r-RID + s-RID
● The adversary can freely expose states, control randomness 

and invoke Send/Recv via oracles.
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r-RID Security

● If Bob accepts a forgery for num, then the adversary wins if 
Bob ever accepts an honest message with num’ > num.

Recv(ct5’)
 → num = 5ct5’ Bob

Send(m3)
 → num = 3Alice

...

Send(m7)
 → num = 7

ct3

ct7

Recv(ct3)
 → num = 3

Recv(ct7)
 →  ⊥
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s-RID Security

● If Bob receives a forgery for num at time t, then the 
adversary wins if Alice ever receives an honest message 
sent after time t.

Bob

Send(ct2)
 → num = 2

Send(m1)

Recv(ct2)  →⊥ 

Recv(ct1’)
ct1

ct2

Alice ct1’

Send(ct0)
 → num = 0

Recv(ct0)  →
num = 0 

ct0
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A First RID Construction

● We build a compiler on top of any Ch = (Send, Recv).
● Naive idea: attach sent and received messages every Send.

– Check for contradictions in every Recv.
● We get r-RID from attaching sent messages.
● We get s-RID from attaching received messages.
● (Simplified:) Messages are stored as (ct, ad, num) tuples.

[The checks are a bit delicate since the adversary can try to 
forge ciphertexts to bypass them.]
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Example (r-RID)

Alice

Bob

Recv(ct5...):
 (ct4’, 4) not in S! 

Output ⊥ 

Send(m1)
 num = 1→

Send(m2) 
 num = 2→

Recv(ct4’)
 → num = 4

ct5, S = {(ct1, 1), …, (ct4, 4)}

ct4’Send(m3) 
 num = 3→

Send(m4) 
 num = 4→

Send(m5)
 → num = 5

R = {(ct4’, 4)}

...

...

...

...
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Example (s-RID)

Alice Bob

Send(m1)

Send(m2)

Recv(ct4’)
 → num = 4

ct, R = {(ct4’, 4)}

ct4’

Send(m3)

Send(m4)

Send(m5)
R = {(ct4’, 4)}

Recv(ct...): (ct4’, 4) 
not in S! 

Output ⊥ 

Send(m)

S = {(ct1, 1), …, (ct5, 5)}
ct5

ct4

ct3

ct2

ct1
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r-RID Lower Bound

● Our construction is very costly (linear growth).
● We show for r-RID that linear growth is unavoidable.

- Intuitively, a ciphertext must ‘contain’ all previously sent 
messages.
- If an honest ciphertext with ordinal num is delivered, all 
forgeries with num’ < num should thereafter be rejected!
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r-RID Lower Bound Statement

● Suppose Alice sends ns messages of length L ≤ n in a row.
● Then, the ciphertext space grows exponentially in O(n + λns) 

for security parameter λ.
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r-RID Lower Bound Proof Sketch

● We construct an (inefficient) encoder/decoder pair.
● Both take Alice and Bob’s initial state as input.
● The encoder also takes as input ns messages and outputs 

ciphertext ns.

● Invoking Shannon’s source coding theorem we arrive at the 
bound on the ciphertext space.
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Overcoming the Lower Bound with s-RID

● s-RID provides ‘delayed’ r-RID guarantees.

Send(ct2)

Send(m1)

 ⊥← Recv(ct2) 

Recv(ct1’)ct1

ct2

Alice
ct1’

Bob

Send(“abort”) ct3
Recv(ct3)  →⊥ 
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s-RID Hashing Optimisation

● Recall for s-RID security, Alice attaches her received 
messages R = ((num1, ad1, ct1), …, (numn, adn, ctn)).

● Alice can instead send R’ = (H(R), num1, …, numn).
● Bob, who knows what he sent to Alice, can then recompute 

H(R) on message reception using the ordinals in R’.
● Can use an incremental hash function to compute H(R) more 

(asymptotically) efficiently.
Other optimisations are possible (ordinal encodings, ...)
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s-RID Epoch-Based Optimisation

● Alice is in epoch e when sending and Bob is in epoch e + 1.
● When Alice receives a message from e + 1, she moves to e + 2.
● The optimisation: 

- Each epoch e message contains Rcore and R’, where R’ is 
initially ⊥ and grows over time.
- Upon epoch e + 2, Alice sets Rcore ← R’ and R’ ← ⊥.

● Assuming honest delivery, Alice/Bob will definitely receive one 
message containing Rcore in each epoch, by definition of epochs.

● Otherwise, a later honest message will contradict a forgery.
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s-RID Epoch-Based Optimisation 2

Send(ct2)

Send(m1)

Recv(ct2...)
epoch = 2
Rcore ← R’
R’ ← ⊥ 

ct1, Rcore, R’, epoch = 0  

epoch = 1, ...

Alice Bob

Send(m3) ct3, Rcore, R’, epoch = 2 
Recv(ct3)  →⊥ 

Recv(ct1...)



25

Conclusion

● Active attacks are worth defending against.
● r-RID is expensive.
● s-RID can be practical!
● Future work: 

- Group RECOVER and practical active attack notions and 
constructions;
- Benchmarking and integration into e.g. Signal;
- …
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Encoder/Decoder Algorithms
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r-RID Lower Bound Proof Sketch 2

● E takes as input ns messages, sends the input messages 
using Alice’s state and Send, and outputs ciphertext ns.

● D uses Bob’s state to deliver the nsth ciphertext.
Then, D iterates over all ciphertexts and tries to deliver the 
first ns - 1 messages with Bob’s state.

● Assuming perfect r-RID security, only the correct messages 
are successfully received by Bob!
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Proof Sketch: Additional Details

● To make the proof work, the encoder and decoder needs also 
to take as input and output the same randomness R.

● Since r-RID security is not perfect, sometimes Bob can 
decrypt the wrong messages.
– This is resolved by Alice by precomputing the false positives and 

encoding them as indices.
– Bob uses these indices to recover the correct messages.
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Out-of-Band Messaging Primitive

● In addition to Send and Receive, we define:
- AuthSend(st) → (st’, num, at);
- AuthRecv(st, at) → (acc, st’, num).

● Authentication tag = at.
● We assume the channel is authentic.
● Examples: QR code scanning, Bluetooth, blockchain, several 

combined channels…
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UNF Out-of-Band Security Notions

● We consider analogous security notions r-UNF and s-UNF 
to r-RID and s-RID.

● r-UNF: Bob will not accept a tag with ordinal num if it has 
received a forgery with ordinal num’ ≤ num.

● s-UNF: Bob will not accept a tag sent by Alice after she has 
received a forgery.

● Given an UNF-secure scheme, tags authenticate the 
message history:
→ With RID security alone this cannot be done in general.
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From RID to UNF Security

● Suppose Ch = (Send, Recv) is RID-secure.
● Then we can construct an UNF-secure Ch’ = (Send, Recv, 

AuthSend, AuthRecv) as follows:
- Send and Recv are as in Ch.
- AuthSend invokes Send with special input; AuthRecv 
analogously receives.

● [Optimisation: unlike for RID, Alice and Bob only need to 
send their sets S and R in AuthSend for UNF].
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Out-of-Band Performance/Security Trade-offs

● A 3-move protocol that allows parties to mutually 
authenticate messages (~delayed UNF security). 

● First can be sent in-band, and the last is 1 bit, so it is ~non- 
interactive.
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Related Work

● Signal safety numbers: QR codes for out-of-band 
comparison of long-term keys.

● [DH21, DH23]: Authenticates Signal’s asymmetric ratchet.
● [DGP22]: Message authentication; different trade-offs to us.
● Apart from [DV19] and [CDV21] that define RECOVER:

- [JS18] implicitly satisfies RECOVER security;
- [DHRR22] explicitly considers r-RECOVER.
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