
On Active Attack Detection in Messaging

 with Immediate Decryption

Khashayar Barooti, Daniel Collins, Simone Colombo,
 Loïs Huguenin-Dumittan, Serge Vaudenay

CRYPTO 2023

2

On Active Attack Detection in
Messaging with Immediate Decryption

● Messaging apps are used by billions daily.
● We consider two-party chats between Alice and Bob.
● The Signal protocol is used by WhatsApp, Signal, …
● The Double Ratchet core offers forward security and post-

compromise security.

3

On Active Attack Detection in
Messaging with Immediate Decryption

● The Double Ratchet provides immediate decryption [ACD19].
● On the protocol level, messages can be dropped/reordered

without stalling future communication.
● Helpful in demanding network settings and for performance.
● [PP22, BRT23, CZ24] (two-party) and MLS (group) also

consider immediate decryption.

4

On Active Attack Detection in
Messaging with Immediate Decryption

Alice Bob

Recv(ct3)

Send(m2)

Send(m3)

Send(m1)

Recv(ct1)

ct1
ct2

ct3

5

On Active Attack Detection in
Messaging with Immediate Decryption

● We consider an adversary that can compromise parties.
● After compromise, the adversary can trivially impersonate

them and inject messages.

6

On Active Attack Detection in
Messaging with Immediate Decryption

Alice Bob
Send(m2)

Send(m3)

Send(m1)
ct1

ct2

ct4

ct3

ct5

ct1’

ct2’

ct3’

● In the worst case, the adversary can continue impersonating
a party forever.

7

On Active Attack Detection in
Messaging with Immediate Decryption

● Two main settings: in-band and out-of-band.
● In-band: if a honest message gets through after an active

attack, detection is possible.
● Out-of-band: authentic, narrowband out-of-band channel

(e.g. QR code) to detect any attack.
● We focus here on in-band detection.

8

r-RECOVER Security (in-order communication) [DV19]

● If Bob receives a forgery, he must stop accepting
subsequent honest messages from Alice.

Alice Bob

Recv(ct2) →⊥

Send(m1)

Send(m2)

Recv(ct1’)ct1

ct2

ct1’

9

s-RECOVER Security (in-order communication) [CDV21]

● If Bob receives a forgery, Alice must stop accepting future
messages from Bob.

Bob

Send(m2)

Send(m1)

 ⊥← Recv(ct2)

Recv(ct1’)ct1

ct2

Alice
ct1’

10

Our Contributions

● Define RECOVER with immediate decryption (RID) notions.
● A first construction satisfying r-RID and s-RID security.
● Linear communication lower bound for r-RID.
● Circumventing the lower bound: optimisations for s-RID.
● [Full paper: Out-of-band constructions with different trade-

offs and security notions.]

11

Messaging Primitive

● We assume ordinals of the form num are totally ordered.
● Ordinals in the Double Ratchet [ACD19]: (epoch, index) pair.

Alice Bob

Send(st, ad, pt) →
(st’, num, ct)

Recv(st, ad, ct) →
 (acc, st’, num, pt)

(ct, ad)

12

RECOVER with Immediate Decryption (RID) Notions

● Generalises RECOVER notions from [DV19] and [CDV21] to
the out-of-order setting.

● RID = r-RID + s-RID
● The adversary can freely expose states, control randomness

and invoke Send/Recv via oracles.

13

r-RID Security

● If Bob accepts a forgery for num, then the adversary wins if
Bob ever accepts an honest message with num’ > num.

Recv(ct5’)
 → num = 5ct5’ Bob

Send(m3)
 → num = 3Alice

...

Send(m7)
 → num = 7

ct3

ct7

Recv(ct3)
 → num = 3

Recv(ct7)
 → ⊥

14

s-RID Security

● If Bob receives a forgery for num at time t, then the
adversary wins if Alice ever receives an honest message
sent after time t.

Bob

Send(ct2)
 → num = 2

Send(m1)

Recv(ct2) →⊥

Recv(ct1’)
ct1

ct2

Alice ct1’

Send(ct0)
 → num = 0

Recv(ct0) →
num = 0

ct0

15

A First RID Construction

● We build a compiler on top of any Ch = (Send, Recv).
● Naive idea: attach sent and received messages every Send.

– Check for contradictions in every Recv.
● We get r-RID from attaching sent messages.
● We get s-RID from attaching received messages.
● (Simplified:) Messages are stored as (ct, ad, num) tuples.

[The checks are a bit delicate since the adversary can try to
forge ciphertexts to bypass them.]

16

Example (r-RID)

Alice

Bob

Recv(ct5...):
 (ct4’, 4) not in S!

Output ⊥

Send(m1)
 num = 1→

Send(m2)
 num = 2→

Recv(ct4’)
 → num = 4

ct5, S = {(ct1, 1), …, (ct4, 4)}

ct4’Send(m3)
 num = 3→

Send(m4)
 num = 4→

Send(m5)
 → num = 5

R = {(ct4’, 4)}

...

...

...

...

17

Example (s-RID)

Alice Bob

Send(m1)

Send(m2)

Recv(ct4’)
 → num = 4

ct, R = {(ct4’, 4)}

ct4’

Send(m3)

Send(m4)

Send(m5)
R = {(ct4’, 4)}

Recv(ct...): (ct4’, 4)
not in S!

Output ⊥

Send(m)

S = {(ct1, 1), …, (ct5, 5)}
ct5

ct4

ct3

ct2

ct1

18

r-RID Lower Bound

● Our construction is very costly (linear growth).
● We show for r-RID that linear growth is unavoidable.

- Intuitively, a ciphertext must ‘contain’ all previously sent
messages.
- If an honest ciphertext with ordinal num is delivered, all
forgeries with num’ < num should thereafter be rejected!

19

r-RID Lower Bound Statement

● Suppose Alice sends ns messages of length L ≤ n in a row.
● Then, the ciphertext space grows exponentially in O(n + λns)

for security parameter λ.

20

r-RID Lower Bound Proof Sketch

● We construct an (inefficient) encoder/decoder pair.
● Both take Alice and Bob’s initial state as input.
● The encoder also takes as input ns messages and outputs

ciphertext ns.

● Invoking Shannon’s source coding theorem we arrive at the
bound on the ciphertext space.

21

Overcoming the Lower Bound with s-RID

● s-RID provides ‘delayed’ r-RID guarantees.

Send(ct2)

Send(m1)

 ⊥← Recv(ct2)

Recv(ct1’)ct1

ct2

Alice
ct1’

Bob

Send(“abort”) ct3
Recv(ct3) →⊥

22

s-RID Hashing Optimisation

● Recall for s-RID security, Alice attaches her received
messages R = ((num1, ad1, ct1), …, (numn, adn, ctn)).

● Alice can instead send R’ = (H(R), num1, …, numn).
● Bob, who knows what he sent to Alice, can then recompute

H(R) on message reception using the ordinals in R’.
● Can use an incremental hash function to compute H(R) more

(asymptotically) efficiently.
Other optimisations are possible (ordinal encodings, ...)

23

s-RID Epoch-Based Optimisation

● Alice is in epoch e when sending and Bob is in epoch e + 1.
● When Alice receives a message from e + 1, she moves to e + 2.
● The optimisation:

- Each epoch e message contains Rcore and R’, where R’ is
initially ⊥ and grows over time.
- Upon epoch e + 2, Alice sets Rcore ← R’ and R’ ← ⊥.

● Assuming honest delivery, Alice/Bob will definitely receive one
message containing Rcore in each epoch, by definition of epochs.

● Otherwise, a later honest message will contradict a forgery.

24

s-RID Epoch-Based Optimisation 2

Send(ct2)

Send(m1)

Recv(ct2...)
epoch = 2
Rcore ← R’
R’ ← ⊥

ct1, Rcore, R’, epoch = 0

epoch = 1, ...

Alice Bob

Send(m3) ct3, Rcore, R’, epoch = 2
Recv(ct3) →⊥

Recv(ct1...)

25

Conclusion

● Active attacks are worth defending against.
● r-RID is expensive.
● s-RID can be practical!
● Future work:

- Group RECOVER and practical active attack notions and
constructions;
- Benchmarking and integration into e.g. Signal;
- …

26

Full version: ia.cr/2023/880
X: @dcol97

Bluesky: @dcol

27

Bibliography

● [JS18]: Jaeger, Stepanovs: Optimal Channel Security Against Fine-Grained State Compromise: The Safety of
Messaging. CRYPTO’18

● [ACD19]: Alwen, Coretti, Dodis: The Double Ratchet: Security Notions, Proofs, and Modularization for the Signal
Protocol. EUROCRYPT’19

● [DV19]: Durak, Vaudenay: Bidirectional Asynchronous Ratcheted Key Agreement with Linear Complexity. IWSEC’19
● [CDV21]: Caforio, Durak, Vaudenay: Beyond Security and Efficiency: On-Demand Ratcheting with Security

Awareness. PKC’21
● [DH21]: Dowling, Hale: Secure Messaging Authentication against Active Man-in-the-Middle Attacks. EuroS&P’21
● [DGP22]: Dowling, Günther, Poirrier: Continuous Authentication in Secure Messaging. ESORICS’22
● [DHRP22]: Dowling, Hauck, Riepel, Rösler: Strongly Anonymous Ratcheted Key Exchange. ASIACRYPT’22
● [PP22]: Pijnenburg, Poettering: On Secure Ratcheting with Immediate Decryption. ASIACRYPT’22
● [BRT23]: Bienstock, Rösler, Tang: ASMesh: Secure Messaging in Mesh Networks Using Stronger, Anonymous Double

Ratchet. CCS’23 (to appear)
● [DH23]: Dowling, Hale: Authenticated Continuous Key Agreement: Active MitM Detection and Prevention. Preprint
● [CZ24]: Cremers, Zhao. Stronger Secure Messaging with Immediate Decryption and Constant-Size Overhead. S&P’24

(to appear)

28

Encoder/Decoder Algorithms

29

r-RID Lower Bound Proof Sketch 2

● E takes as input ns messages, sends the input messages
using Alice’s state and Send, and outputs ciphertext ns.

● D uses Bob’s state to deliver the nsth ciphertext.
Then, D iterates over all ciphertexts and tries to deliver the
first ns - 1 messages with Bob’s state.

● Assuming perfect r-RID security, only the correct messages
are successfully received by Bob!

30

Proof Sketch: Additional Details

● To make the proof work, the encoder and decoder needs also
to take as input and output the same randomness R.

● Since r-RID security is not perfect, sometimes Bob can
decrypt the wrong messages.
– This is resolved by Alice by precomputing the false positives and

encoding them as indices.
– Bob uses these indices to recover the correct messages.

31

Out-of-Band Messaging Primitive

● In addition to Send and Receive, we define:
- AuthSend(st) → (st’, num, at);
- AuthRecv(st, at) → (acc, st’, num).

● Authentication tag = at.
● We assume the channel is authentic.
● Examples: QR code scanning, Bluetooth, blockchain, several

combined channels…

32

UNF Out-of-Band Security Notions

● We consider analogous security notions r-UNF and s-UNF
to r-RID and s-RID.

● r-UNF: Bob will not accept a tag with ordinal num if it has
received a forgery with ordinal num’ ≤ num.

● s-UNF: Bob will not accept a tag sent by Alice after she has
received a forgery.

● Given an UNF-secure scheme, tags authenticate the
message history:
→ With RID security alone this cannot be done in general.

33

From RID to UNF Security

● Suppose Ch = (Send, Recv) is RID-secure.
● Then we can construct an UNF-secure Ch’ = (Send, Recv,

AuthSend, AuthRecv) as follows:
- Send and Recv are as in Ch.
- AuthSend invokes Send with special input; AuthRecv
analogously receives.

● [Optimisation: unlike for RID, Alice and Bob only need to
send their sets S and R in AuthSend for UNF].

34

Out-of-Band Performance/Security Trade-offs

● A 3-move protocol that allows parties to mutually
authenticate messages (~delayed UNF security).

● First can be sent in-band, and the last is 1 bit, so it is ~non-
interactive.

35

Related Work

● Signal safety numbers: QR codes for out-of-band
comparison of long-term keys.

● [DH21, DH23]: Authenticates Signal’s asymmetric ratchet.
● [DGP22]: Message authentication; different trade-offs to us.
● Apart from [DV19] and [CDV21] that define RECOVER:

- [JS18] implicitly satisfies RECOVER security;
- [DHRR22] explicitly considers r-RECOVER.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

