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Why Threshold Cryptography?

▪ Avoid any single point of failure.
▪ Distribute a task or secret among a set of 

fault-tolerant parties (or servers).
▪ Set of n parties P1, …, Pn, up to t of which are 

malicious, want to perform a task: 
– Threshold signatures 
– Threshold encryption
– Distributed coin flipping
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Distributed Key Generation (DKG) Protocol
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Distributed Key Generation (DKG) Protocol

Output 
 

Public key
 pk = gsk

 

Properties:

▪Consistency: All honest parties 
output the same public key and the 
same vector of public key shares PK 
= (pk1, …, pkn).

▪Correctness: There is a polynomial  
f in Zp[X] of degree t s.t. ski = f(i) 
and pki = gski. In addition, pk = gf(0).

▪Secrecy: No information on x can 
be learned by the adversary except 
of what is implied by the public key.

▪Uniformity: The public key output is 
uniformly distributed.

sk2,PK

 sk3,PK 

 

sk1,PK
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Synchronous and Asynchronous Networks

Authenticated 
point-to-point channels

Time t + ΔTime t

Time t + Δ

Time t’Time t

Time t’’

Message sent at time T
will arrive at time T + Δ

Messages can be
arbitrarily delayed. No
upper bound Δ exists.

Synchronous Network Asynchronous Network
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▪ Network is either synchronous or asynchronous throughout execution.
          Problem: Parties do not know which world they are in.

▪ Synchronous protocols: tolerate ts < n/2 corruptions, but are insecure in asynchrony!

▪ Asynchronous protocols: tolerates ta < n/3 corruptions, but only ts < n/3 in synchrony!

▪ In this work, we consider ta + 2ts < n (which we show is necessary and sufficient for DKG)

Network-Agnostic Protocols
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▪ In this work, we consider ta + 2ts < n (necessary and sufficient!)
 

▪ Consider ta and ts such that ta < n/3 ≤ ts < n/2.

▪ Let f(t) be the probability that there are more than t faults.
▪ Let p be the probability that the network delay exceeds Δ.

Network-Agnostic Protocols are More Versatile
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▪ In this work, we consider ta + 2ts < n (necessary and sufficient!)
 

▪ Consider ta and ts such that ta < n/3 ≤ ts < n/2.

▪ Let f(t) be the probability that there are more than t faults.
▪ Let p be the probability that the network delay exceeds Δ. 

▪ Suppose that p = f(ta) = 1/10, f((n-1)/3) = 1/20 and f(ts) = 0. Then:
 A synchronous protocol fails with probability 1/10;
 An asynchronous protocol fails with probability 1/10;
 A network-agnostic protocol fails with probability f(ts) + p*f(ta) = 1/100.

Network-Agnostic Protocols are More Versatile



9

▪ Network is either synchronous or asynchronous throughout.
          Problem: Parties do not know which world they are in.

▪ Plain PKI model:
– At setup, parties each upload a public key. 
– No trusted setup (except possibly a CRS).

Motivation and Model
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▪ Network is either synchronous or asynchronous throughout.
          Problem: Parties do not know which world they are in.

▪ Plain PKI model:
– At setup, parties each upload a public key. 
– No trusted setup (except possibly a CRS).

▪ Static security: adversary corrupts parties before the protocol 
begins.

▪ Can corrupt up to ts parties in synchrony and ta parties in 
asynchrony.

▪ A protocol is ts/ta-secure in synchrony/asynchrony if it satisfies its 
properties in synchrony/asynchrony respectively.

Motivation and Model

pk1

pk2

pk5

Bulletin Board

Party P5 

Party P2

Party P1 



11

▪ Theorem (Network-agnostic DKG): 
▪ Let ts < n/2 and ta < n/3 be such that ta + 2ts < n. Then, in the plain PKI setting there is a 

DKG that is ts-secure in synchrony and ta-secure in asynchrony with O(λn3) 
communication complexity.

▪ Application: We get efficient network-agnostic MPC without trusted setup!

 

Our Main Result
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Along the way: Efficient Synchronous Broadcast



13

▪ Network-agnostic protocols:
– ‘Generation 1’: feasibility results for Byzantine agreement [BKL19], MPC [BLL20, ACC22], 

state machine replication [BKL21], approximate agreement [GLW22]…
– ‘Generation 2’ protocols: more efficient protocols [DHL21, ABKL22, this work]

Related Work
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▪ Network-agnostic protocols:
– ‘Generation 1’: feasibility results for Byzantine agreement [BKL19], MPC [BLL20, ACC22], 

state machine replication [BKL21], approximate agreement [GLW22]…
– ‘Generation 2’ protocols: more efficient protocols [DHL21, ABKL22, this work]

▪ Distributed key generation:
– Synchrony: classic protocols assume a broadcast channel [GJKR07]; recently got O(λn3) 

communication without one [SBKN21]
– Asynchrony: recent line of work, many now which achieve O(λn3) communication 

[DYX+22], [AJM+22], plus one with adaptive security [AJM+23]

Related Work
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Synchronous Broadcast

Party P3

Bad party P2

Party P1 

Bad party P4

Leader P*

m
m

m

m

▪ System of n parties P1, …, Pn malicious parties 
with t < (1 – ε)n malicious parties and a leader 
P*.

 
▪  P* wants to propagate a message m with: 

– Validity: If P* is honest, all honest 
parties output m.
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Synchronous Broadcast
Output 
    m

Output 
    m Output

    m 
Party P3

Bad party P2

Party P1 
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▪ System of n parties P1, …, Pn malicious parties 
with t < (1 – ε)n malicious parties and a leader 
P*.

 
▪  P* wants to propagate a message m with: 

– Validity: If P* is honest, all honest 
parties output m.
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Synchronous Broadcast

♠

†

Party P3

Bad party P2

Party P1 

Bad party P4

Leader P*

m

▪ System of n parties P1, …, Pn malicious parties 
with t < (1 – ε)n malicious parties and a leader 
P*.

 
▪  P* wants to propagate a message m with: 

– Validity: If P* is honest, all honest 
parties output m.
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Synchronous Broadcast

▪ System of n parties P1, …, Pn malicious parties 
with t < (1 – ε)n malicious parties and a leader 
P*.

 
▪  P* wants to propagate a message m with: 

– Validity: If P* is honest, all honest 
parties output m.

– Consistency: All honest parties output 
the same message m’ (possibly ).⊥

♠

†

Output  
    m’

Output  
    m’ 

Party P3

Bad party P2

Party P1 

Bad party P4

Leader P*

m
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Synchronous Broadcast

▪ System of n parties P1, …, Pn malicious parties 
with t < (1 – ε)n malicious parties and a leader 
P*.

 
▪  P* wants to propagate a message m with: 

– Validity: If P* is honest, all honest 
parties output m.

– Consistency: All honest parties output 
the same message m’ (possibly ).⊥

– Termination: All honest parties terminate
with some output.

♠

†

Party P3

Bad party P2

Party P1 

Bad party P4

Leader P*

m
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▪ Combination of gossiping [TLP22] and 
extension protocol [NRS+20] 
techniques.

▪ Idea: Replace signature multicast step 
in [NRS+20] with gossip.

▪ Gossip: forward the message to O(λ) 
parties (one is honest with high 
probability).

▪ Guarantee: everyone learns the 
message in log(n) rounds and O(λn) 
communication.

Techniques for Broadcast

.

.

.

.

.

.
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Intrusion-tolerant Consensus (ITC)

b

Authenticated
point-to-point channels

▪ Consensus: parties propose and agree 
on a message m. 

Agreed
 on m
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Intrusion-tolerant Consensus (ITC) Prop 
  m

Prop 
  m3

Prop 
  m

 Propose
 msg m1 

Prop 
  m4

bAgreed
 on m

Authenticated
point-to-point channels

▪ Consensus: parties propose and agree 
on a message m.
 

▪ Problem: m could come from a 
dishonest party. 
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▪ Consensus: parties propose and agree 
on a message m.
 

▪ Problem: m could come from a 
dishonest party.
 

▪ Solution: intrusion-tolerant consensus

▪ Intrusion-tolerance: an honest party 
can output either an honest party’s 
input or . ⊥

Intrusion-tolerant Consensus (ITC) Prop 
  m2

Prop 
  m3

Prop 
  m5

 Propose
 msg m1

Prop 
  m’

bAgreed
 on m’

Authenticated
point-to-point channels
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More on Intrusion-Tolerant Consensus

Prop 
  m2

Prop 
  m

Prop 
  m5

Prop 
  m

bAgreed
 on m Prop 

  m

▪ Validity: if every honest party inputs the same m,
they also output m.
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More on Intrusion-Tolerant Consensus

Prop 
  m2

Prop 
  m3

Prop 
  m5

Prop 
  m4

bAgreed
 on m Prop 

  m1

▪ Validity: if every honest party inputs the same m,
they also output m.

▪ Consistency: every honest party outputs 
the same message m.
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More on Intrusion-Tolerant Consensus

▪ Validity: if every honest party inputs the same m,
they also output m.
 

▪ Consistency: every honest party outputs 
the same message m.
 

▪ Liveness: every honest party outputs 
some message m. 

Prop 
  m2

Prop 
  m3

Prop 
  m5

Prop 
  m4

bAgreed
 on m Prop 

  m1
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More on Intrusion-Tolerant Consensus

▪ Validity: if every honest party inputs the same m,
they also output m.
 

▪ Consistency: every honest party outputs 
the same message m.
 

▪ Liveness: every honest party outputs 
some message m. 

▪ Asynchronous protocol from [MR17] adapted to 
the network-agnostic setting.

– Ensures ts-validity in synchrony.
– O((L + λ)n3) communication complexity.

Prop 
  m2

Prop 
  m3

Prop 
  m5

Prop 
  m4

bAgreed
 on m Prop 

  m1
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▪ Consists of a synchronous and asynchronous component.

▪ Goal: agree on ts + 1 or more PVSS sharings to jointly combine.
– PVSS: publicly verifiable secret sharing: non-interactive sharing from a dealer.

DKG Protocol Overview
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▪ Consists of a synchronous and asynchronous component.

▪ Goal: agree on ts + 1 or more PVSS sharings to jointly combine.
– PVSS: publicly verifiable secret sharing: non-interactive sharing from a dealer.

▪ First, all parties synchronously broadcast a O(λn)-sized PVSS sharing.

DKG Protocol Overview
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▪ Consists of a synchronous and asynchronous component.

▪ Goal: agree on ts + 1 or more PVSS sharings to jointly combine.
– PVSS: publicly verifiable secret sharing: non-interactive sharing from a dealer.

▪ First, all parties synchronously broadcast a O(λn)-sized PVSS sharing.

▪ Then, all parties run (multivalued) intrusion-tolerant consensus on the output of all broadcasts.
– ts-validity in synchrony, so all parties agree.

DKG Protocol Overview
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▪ Consists of a synchronous and asynchronous component.

▪ Goal: agree on ts + 1 or more PVSS sharings to jointly combine.
– PVSS: publicly verifiable secret sharing: non-interactive sharing from a dealer.

▪ First, all parties synchronously broadcast a O(λn)-sized PVSS sharing.

▪ Then, all parties run (multivalued) intrusion-tolerant consensus on the output of all broadcasts.
– ts-validity in synchrony, so all parties agree.

▪ In asynchrony, the intrusion-tolerant consensus may return .⊥
– Fallback to an existing ADKG protocol with O(λn3) communication complexity!

DKG Protocol Overview
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Pictorial Description of the DKG

 PVSS

 PVSS Sync BROADCAST

Sync BROADCAST

T1 = {P2,P4,P5}

T2 = {P2,P4,P5}

 T5 = {P2,P4,P5}

   
  Intrusion- 
  Tolerant 
 Consensus

Reconstruction

   Async DKG

…

……

…

…

…
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▪ Running our ITC protocol (with CC O((L + λ)n3)) on all PVSS sharings would be too expensive
– Thus, parties run consensus on an accumulated value z.
– z contains n accumulated values: value i is a set of O(n) values Pi needs to reconstruct the 

public key. 
– Then if ITC terminates with T ≠ , the honest proposers can forward these values to each ⊥

Pi.

Additional protocol details
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▪ Running our ITC protocol (with CC O((L + λ)n3)) on all PVSS sharings would be too expensive.
– Thus, parties run consensus on an accumulated value z.
– z contains n accumulated values: value i is a set of O(n) values Pi needs to reconstruct the 

public key. 
– Then if ITC terminates with T ≠ , the honest proposers can forward these values to each ⊥

Pi.

▪ In asynchrony, synchronous broadcast can result in arbitrary disagreement.
– Thus, parties propose an accumulated value z to ITC only if they receive enough valid PVSS 

sharings.
– Otherwise, they simply propose  to ITC.⊥

Additional protocol details
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▪ Our DKG can be used to bootstrap network-agnostic MPC without trusted setup [BLL20, …].

▪ We also improve complexity over [BLL20]: either a linear improvement in communication or go 
from trusted setup to plain PKI for free!

– O(λn2) complexity per multiplication gate with trusted setup, matching the asynchronous 
state-of-the-art with additively-homomorphic threshold encryption [HNP08].

▪ The BLL20 protocol:

Application to MPC and Improving Complexity
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On BLL20

▪ ACS = agreement on a core set
▪ BC = broadcast

Bottleneck!
Uses n network-agnostic BA per gate!
With [DHL21], each BA costs O(λn2)
=> O(λn3|C|) cost for circuit C!
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Efficient Network-Agnostic MPC: Amortisation with Beaver Triples

▪ Number of BA instances now independent of |C|.
▪ Uses our O(nL + λn2) CC broadcast protocol.



38

▪ We obtain network-agnostic DKG (almost) for free!

▪ To make it even freer:
– Can we obtain O(1) round complexity?
– Can we obtain adaptive security?

▪ Additional future work: implementation!

▪ Thank you for funding us:
– Renas Bacho: DFG
– Chen-Da Liu-Zhang: Web3 Foundation, NSF, DARPA, Ripple, DoE, JP Morgan, PNC, Cylab

▪ Thank you!

Conclusion and Future Work

      Full Paper
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