Cryptographic Administration for Secure Group Messaging

David Balbas*!, Daniel Collins!, Serge Vaudenay*

*IMDEA Software Institute, Madrid, Spain
TUniversidad Politécnica de Madrid, Spain
fEPFL, Lausanne, Switzerland

Swiss Crypto Day, 8th September 2023

(USENIX Security '23... thank you David for your slides!)

iinstitutél ea

software

=PrL




Group Messaging?

<l Road to Malta@ @ == & = (=

Alex, Alvaro, Caron, Diego, Diego,...

Road...

i
Para comer llevamos un bocata sin mas y ya
cenamos bien 216 Encryption
Me: are d-to-end encrypted. Tap to
Y0 apoyo eso 1516 learn more

Quedan pocos dias de playa y mafiana al
mediodia se va a estar bien 1217

0 hacerlo todo a la vez que se puede ,,.,; , > You
> Disponible
Simon
Pero ya es mas lata estar llevando una bbq y =) Diego Cuevas

todo cerca de la playa 219 Y saldremos a sofar

Alex Houbar

Live a life you will remember

Me fio yo de la prevision.... ;5.

Simon
Alvaro Castanedo

2 Queremos lluvia fuerte de vel
Me fio yo de la prevision JieEnes e e ce

Yaya pero es ver mafiana cuando nos
levantemos como hace

Diego Cuevas
Pues playay cenamos BBQalas8 ;.
All we have to decide is what to do with the time t
Simon
Que ivan de hecho diio de ir a moagro a la A IvanGonzaler




thenewsminute.com

WhatsApp Group chats can be easily
infiltrated, say researchers

Written by IANS

4-5 minutes
The WhatsApp attack on group chats takes advantage of a bug.

A team of German cryptographers has discovered flaws in
WhatsApp's Group chats despite its end-to-end encryption, that
makes it possible to infiltrate private group chats without admin
permission.

According to a report in Wired.com, the cryptographers from Ruhr
University Bochum in Germany announced this at the "Real World
Crypto Security Conference in Zurich, Switzerland, on Wednesday.

"Anyone who controls the app's servers could insert new people
into private group chats without needing admin permission," the
report said, citing cryptographers.




thenewsminute.com

WhatsApp Group chats can be easily
infiltrated, say researchers

Written by IANS

ISG researchers discover vulnerabilities in

Matrix protocol
The WhatsApp attack on grouj

Research and teaching Departments and schools Information Security News

A team of German cryptograpk
WhatsApp's Group chats desp Date 28 September 2022
makes it possible to infiltrate p

permission. Ateam of cryptographers - Dan Jones and Martin Albrecht

(Royal Holloway), Soffa Celi (Brave) and Benjamin Dowling
According to a report in Wired (University of Sheffield) has found several, practically-
University Bochum in German exploitable cryptographic vulnerabilities in the end-to-end
encryption provided by the popular Matrix protocol and its
flagship client implementation Element.

N

Crypto Security Conference in|

"Anyone who controls the app]
into private group chats withou
report said, citing cryptographd




thenewsminute.com

WhatsApp Group chats can be easily
infiltrated, say researchers

Written by IANS

ISG researchers discover vulnerabilities in

Matrix protocol
The WhatsApp attack on grouj

Research and teaching Departments and schools Information Security News

A team of German cryptograpk

Three Lessons From Threema: Analysis of a Secure Messenger f]cght
. >nd
Kenneth G. Paterson Matteo Scarlata Kien Tuong Truong dits
Applied Cryptography Group, Applied Cryptography Group, Applied Cryptography Group,
ETH Zurich ETH Zurich ETH Zurich

Abstract « fine-grained perfect forward secrecy (PFS): compro-




Group membership?

Insecure group membership is a common design flaw in messaging.
Servers, and sometimes even users, may mount attacks on group management.

= Burgle into the group [RMS18]
= Censorship [BCG23]



Burgle into the Group Attack

= Reported by [RMS18] and affects WhatsApp groups.



Burgle into the Group Attack

= Reported by [RMS18] and affects WhatsApp groups.

= In messaging apps, a server (Meta) fowards messages between users.



Burgle into the Group Attack

= Reported by [RMS18] and affects WhatsApp groups.
= In messaging apps, a server (Meta) fowards messages between users.

= Suppose A is the group administrator and wants to add B to group G.



Burgle into the Group Attack

= Reported by [RMS18] and affects WhatsApp groups.

= In messaging apps, a server (Meta) fowards messages between users.

= Suppose A is the group administrator and wants to add B to group G.

= To do so, A sends a message M = (A, G, namea, IDp,, t,, m = {add, B}) to the

Server.



Burgle into the Group Attack

= Reported by [RMS18] and affects WhatsApp groups.

= In messaging apps, a server (Meta) fowards messages between users.

= Suppose A is the group administrator and wants to add B to group G.

= To do so, A sends a message M = (A, G, namea, IDp,, t,, m = {add, B}) to the

Server.

= The server then forwards it to all users.



Burgle into the Group Attack

= Reported by [RMS18] and affects WhatsApp groups.

= In messaging apps, a server (Meta) fowards messages between users.

= Suppose A is the group administrator and wants to add B to group G.

= To do so, A sends a message M = (A, G, namea, IDp,, t,, m = {add, B}) to the

server.
= The server then forwards it to all users.

= Problem: M is not authenticated by Al



Burgle into the Group Attack

= Reported by [RMS18] and affects WhatsApp groups.

= In messaging apps, a server (Meta) fowards messages between users.

= Suppose A is the group administrator and wants to add B to group G.

= To do so, A sends a message M = (A, G, namea, IDp,, t,, m = {add, B}) to the

server.
= The server then forwards it to all users.
= Problem: M is not authenticated by Al
= The server can trivially send (A, ..., m = {add, C}) instead!



Group Administration?

How meaningful is security if users can't trust/control group membership?



Group Administration?

How meaningful is security if users can't trust/control group membership?

Can we build an efficient solution for users to administrate groups securely?



This Work and Talk

= New formalism for groups (based on continuous group key agreement) with
cryptographic administrators.



This Work and Talk

= New formalism for groups (based on continuous group key agreement) with
cryptographic administrators.
= Correctness and security notions matching modern messaging standards (forward

security, post-compromise security).



This Work and Talk

= New formalism for groups (based on continuous group key agreement) with
cryptographic administrators.

= Correctness and security notions matching modern messaging standards (forward
security, post-compromise security).

= Two modular, provably-secure constructions, IAS and DGS.



This Work and Talk

= New formalism for groups (based on continuous group key agreement) with

cryptographic administrators.
= Correctness and security notions matching modern messaging standards (forward

security, post-compromise security).
= Two modular, provably-secure constructions, IAS and DGS.

= Efficient integration with MLS, benchmarking, and admin extensions.



Group Messaging




Group Administration?

607PMZA O 2

€ Group settings

Participants can:

Edit group settings
This includes the name, icon,

/ description, disappearing
message timer, and keeping and
unkeeping messages.

E¥  Send messages

+2. Add other participants

Admins can:

Approve new participants
® When turned on, admins must

approve anyone who wants to

join the group. Learn more

© ©6 6

Group admins

2»  Edit group admins

603PMZA O N3 DA

& Edit

Swiss Crypto Day Rules ®

(0]  SetPhoto

Description (optional)

9o Group Type Private
(5 ChatHistory Hidden
:=  Topics

The group chat will be divided into topics created by
admins or users

) Reactions Al
/D Permissions 13/13

2 Invite Links 1



Group Administration?

607PMZA O 2

€ Group settings

Participants can:

Edit group settings
This includes the name, icon,

/ description, disappearing
message timer, and keeping and
unkeeping messages.

E¥  Send messages

+2. Add other participants

Admins can:

Approve new participants
® When turned on, admins must

approve anyone who wants to

join the group. Learn more

© ©6 6

Group admins

2»  Edit group admins

603PMZA O N3 DA

& Edit

Swiss Crypto Day Rules ®

(0]  SetPhoto

Description (optional)

9o Group Type Private
(5 ChatHistory Hidden
:=  Topics

The group chat will be divided into topics created by
admins or users

) Reactions Al
/D Permissions 13/13

2 Invite Links 1

= Many features in
practice!



Group Administration?

607PMZ © A

€ Group settings

Participants can!

Edit group settings
This includes the name, icon,

/ description, disappearing
message timer, and keeping and
unkeeping messages.

+2. Add other participants

Admins can:

©
E¥  Send messages o
Q)
Q)

Approve new participants
® When turned on, admins must

approve anyone who wants to

join the group. Learn more

Group admins

2»  Edit group admins

603PMZA O N3 DA

& Edit

@ Swiss Crypto Day Rules

(0]  SetPhoto
Description (optional)
9o Group Type
@ Chat History

:=  Topics

Private

Hidden

The group chat will be divided into topics created by

admins or users
) Reactions
/D Permissions

2 Invite Links

All

13/13

= Many features in
practice!

= In this talk: only
admins should be
able to add and
remove users (and
admins).



Security of Group Messaging

= As usual: confidentiality, authentication, integrity.



Security of Group Messaging

= As usual: confidentiality, authentication, integrity.
= Forward security (FS): past messages safe after compromise.
= Post-compromise security (PCS): self-healing via key updates.

FS 15 PCS




Security of Group Messaging

= As usual: confidentiality, authentication, integrity.
= Forward security (FS): past messages safe after compromise.
= Post-compromise security (PCS): self-healing via key updates.

FS 15 PCS

= Security game: A controls network, can expose users [ACDT20, KPWK+21].



Security of Group Messaging

= As usual: confidentiality, authentication, integrity.
= Forward security (FS): past messages safe after compromise.
= Post-compromise security (PCS): self-healing via key updates.

FS 15 PCS

= Security game: A controls network, can expose users [ACDT20, KPWK+21].
= Group dynamics: cryptographic adds and removes from group G.



Security of Group Messaging

= As usual: confidentiality, authentication, integrity.
= Forward security (FS): past messages safe after compromise.
= Post-compromise security (PCS): self-healing via key updates.

FS 15 PCS

= Security game: A controls network, can expose users [ACDT20, KPWK+21].
= Group dynamics: cryptographic adds and removes from group G.
= Administration: only admins G* C G can make group changes.



Towards MLS (Message Layer Security)

Existing group messaging protocols:

= Pairwise two-party channels: O(n)
sender communication.

10



Towards MLS (Message Layer Security)

Existing group messaging protocols:

= Pairwise two-party channels: O(n)
sender communication.

= Sender Keys (WhatsApp, Signal, ...):
O(1) sender communication.

10



Towards MLS (Message Layer Security)

Existing group messaging protocols:

= Pairwise two-party channels: O(n)
sender communication.

= Sender Keys (WhatsApp, Signal, ...):
O(1) sender communication.

= Both have O(n?) communication for
full key refreshes!

10



Towards MLS (Message Layer Security)

Existing group messaging protocols:

= Pairwise two-party channels: O(n)
sender communication.

= Sender Keys (WhatsApp, Signal, ...):
O(1) sender communication.

= Both have O(n?) communication for
full key refreshes!

= Cannot easily scale to 1000s of users.

10



Towards MLS (Message Layer Security)

MLS:

= O(log n) fair-weather sender

Existing group messaging protocols: .
g group ging p communication for key updates.

= Pairwise two-party channels: O(n)
sender communication.

= Sender Keys (WhatsApp, Signal, ...):
O(1) sender communication.

= Both have O(n?) communication for
full key refreshes!

= Cannot easily scale to 1000s of users.

10



Towards MLS (Message Layer Security)

MLS:

= O(log n) fair-weather sender

Existing group messaging protocols: .
g group ging p communication for key updates.

= Pairwise two-party channels: O(n) = Recently became IETF RFC 9420.

sender communication.

= Sender Keys (WhatsApp, Signal, ...):
O(1) sender communication.

= Both have O(n?) communication for
full key refreshes!

= Cannot easily scale to 1000s of users.

10



Towards MLS (Message Layer Security)

MLS:

= O(log n) fair-weather sender

Existing group messaging protocols: .
g group ging p communication for key updates.

= Pairwise two-party channels: O(n) = Recently became IETF RFC 9420.

sender communication.
= Sender Keys (WhatsApp, Signal, ...):
O(1) sender communication.

= Many features; a complex standard.

= Both have O(n?) communication for

full key refreshes!

= Cannot easily scale to 1000s of users.

10



Towards MLS (Message Layer Security)

MLS:

= O(log n) fair-weather sender

Existing group messaging protocols: .
g group ging p communication for key updates.

= Pairwise two-party channels: O(n) = Recently became IETF RFC 9420.

sender communication.

= Sender Keys (WhatsApp, Signal, ...):
O(1) sender communication.

= Many features; a complex standard.

= Interest from academia and industry.

= Both have O(n?) communication for PRX ™ N
full key refreshes! T ETF %MLS GO gle

= Cannot easily scale to 1000s of users.

cisco

10



Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

11



Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

= Dynamic secret | known to members.

11



Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

= Dynamic secret | known to members.

= Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

11



Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

= Dynamic secret | known to members.

= Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

= Later, ID’ commits several proposals and
users then process the commit.

11



Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

= Dynamic secret | known to members.

= Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

= Later, ID’ commits several proposals and
users then process the commit.

= Can build group messaging using |
(KEM/DEM-style with signatures for

example).
11



Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

= Dynamic secret | known to members. CGKA (simplified):

= Members ID propose adds, removals, and = Init(1%, ID)
key updates [AJM20, RFC9420]. = Create(G) > T

» Later, ID’ commits several proposals and = Prop(/D,type) — P
users then process the commit. = Commit(P) » T

= Can build group messaging using / » Proc(T)— 1T
(KEM/DEM-style with signatures for
example).

11



CGKA: Create

= ID; creates a group G = {ID1, D5, ID3, ID4}.

IDs
ID,

Create(IDl, IDz, ID3, ID4)
IDs

ID,

ID,

12



CGKA: Proposals

= /D5 and /D3 propose changes.

Prop(rem, ID,)

1D,
D,

Prop(add, IDs)

ID,

13



CGKA: Commit

= /D, commits both proposals.

14



CGKA: Process Changes

= The group evolves to a new epoch and I’ is refreshed.

15



Key Agreement: (A-)CGKA

Administrated Continuous Group Key Agreement (A-CGKA).

= Dynamic secret | known to members.

= Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

A-CGKA includes new proposal types:
add/remove/update admin.

» Later, ID’ commits several proposals and
users then process the commit.

16



Key Agreement: (A-)CGKA

Administrated Continuous Group Key Agreement (A-CGKA).

= Dynamic secret | known to members.

= Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

A-CGKA includes new proposal types:
add/remove/update admin.

» Later, ID’ commits several proposals and

users then process the commit.

A-CGKA (simplified):

Init(1%, ID)

Create(G,G*) — T
Prop(/D, type) — P
Commit(l3, com-type) — T
Proc(T) — I

16



Key Agreement: (A-)CGKA

Administrated Continuous Group Key Agreement (A-CGKA).

= Dynamic secret | known to members. A-CGKA (simplified):

= Members ID propose adds, removals, and = Init(1%, ID)
key updates [AJM20, RFC9420]. = Create(G,G*) = T
A-CGKA includes new proposal types: = Prop(ID, type) — P

add/remove/update admin. = Commit(P, com-type) — T

= Later, ID’ commits several proposals and « Proc(T) — /'
users then process the commit.

Administration security: Non-admins cannot commit (except updates and
self-removes). 16



A-CGKA Correctness

CORR{;\)-CGKA,CCO" (1*)

17



A-CGKA Correctness

CORR{;\)-CGKA,CCO" (1*)

= All users who transition to the same
epoch have the same view of the group
and key.

17



A-CGKA Correctness

CORR{;\)-CGKA,CCO" (1*)

= All users who transition to the same
epoch have the same view of the group
and key.

= Only Proc modifies the group and key.

17



A-CGKA Correctness

CORR{;\)-CGKA,CCO" (1*)

= All users who transition to the same

epoch have the same view of the group
and key.

= Only Proc modifies the group and key.

= Proc has its intended effect.

17



A-CGKA Correctness

CORR{;\)-CGKA,CCO" (1*)

= All users who transition to the same
epoch have the same view of the group
and key.

= Only Proc modifies the group and key.
= Proc has its intended effect.

= Admins always form a non-empty
subset of the group.

17



A-CGKA Correctness

CORR{;\)-CGKA,CCO" (1*)

CheckSameGroupState(y1, vz, gid)

= All users who transition to the same : :
1: reward ~vi[gid].k # v2[gid].k

epoch have the same view of the group 2. reward v1[gid].G # vo[gid].G
and key. 3: reward 7 [gid].G* # v2[gid].G*

= Only Proc modifies the group and key.
= Proc has its intended effect.

= Admins always form a non-empty
subset of the group.

17



A-CGKA Correctness

CORR{;\)-CGKA,CCO" (1*)

CheckSameGroupState(y1, vz, gid)

= All users who transition to the same : :
) 1: reward ~vi[gid].k # v2[gid].k
epoch have the same view of the group 2. reward 71 [gid].C # v2[gid.C

and key. 3: reward 7 [gid].G* # v2[gid].G*
= Only Proc modifies the group and key.
= Proc has its intended effect. reward props(ST(ID], T)) # Tlgid, (¢, c), *vec’, ']

= Admins always form a non-empty
subset of the group.

17



A-CGKA Correctness

CORR{;\)-CGKA,CCO" (1*)

CheckSameGroupState(y1, vz, gid)

= All users who transition to the same : :
) 1: reward ~vi[gid].k # v2[gid].k
epoch have the same view of the group 2. reward 71 [gid].C # v2[gid.C

and key. 3: reward 7 [gid].G* # v2[gid].G*
= Only Proc modifies the group and key.

= Proc has its intended effect. reward props(ST[ID], T') # Tlgid, (t,c), *vec’, ']

= Admins always form a non-empty

subset of the group. reward —(0) # 7[gid].G* C 7[gid].G))

17



A-CGKA Security

KIND?} 1
(A)-CGKA’CCEka ’Cadm,cfovgery ( )

18



A-CGKA Security

KIND?} 1
(A)-CGKA’CCEka ’Cadm,cfovgery ( )

= A key indistinguishability game.

18



A-CGKA Security

KINDA 1>
(A)-CGKA7CCgka7Cadm,Cf°'gery ( )

= A key indistinguishability game.
= Formally captured in cleanness
predicates.

18



A-CGKA Security

A A
KIND(A)-CGKA’CCEka ’Cadm,cfovgery (1 )
= A key indistinguishability game.

= Formally captured in cleanness
predicates.

= Cannot inject commits even if
non-admins are corrupted (except for
non-admin updates and self-removes).

18



A-CGKA Security

KIND?} 1
(A)-CGKA’CCEka ’Cadm,cfovgery ( )

A key indistinguishability game.

= Formally captured in cleanness
predicates.

= Cannot inject commits even if
non-admins are corrupted (except for
non-admin updates and self-removes).

= Security is restored after compromised

users (and admins) update or are

removed (PCS).

18



A-CGKA Security

KIND?} 1
(A)-CGKA’CCEka ’Cadm,cfovgery ( )

Cegka-opt Cadm-opt Cforgery

A key indistinguishability game.

= Formally captured in cleanness
predicates.

= Cannot inject commits even if
non-admins are corrupted (except for
non-admin updates and self-removes).

= Security is restored after compromised

users (and admins) update or are

removed (PCS).

18



A-CGKA Security

A A
KIND(A)-CGKA’CCEka ’Cadmacfovgery (1 )
A key indistinguishability game.

Formally captured in cleanness
predicates.

Cannot inject commits even if

non-admins are corrupted (except for
non-admin updates and self-removes).
Security is restored after compromised

users (and admins) update or are
removed (PCS).

chka -opt Cad m-opt Cforge ry

OMieet(ID, m, t)

NS Ot e W N

require Cygm A (ep[ID] = (-, ta)) A (ta # —1)
require (m,-) € T / external forgery
(v, L) + proc(ST[ID], m)
i Corgery
forged < true / successful forgery
return b / adversary wins

else return L

18



A-CGKA Security

A A
KIND(A)-CGKA’CCEka ’Cadmacfovgery (1 )
A key indistinguishability game.

Formally captured in cleanness
predicates.

Cannot inject commits even if

non-admins are corrupted (except for
non-admin updates and self-removes).
Security is restored after compromised

users (and admins) update or are
removed (PCS).

chka -opt Cad m-opt Cforge ry

OMieet(ID, m, t)

1: require Cyym A (ep[ID] = (-, ta)) A (ta # —1)
2: require (m,:) ¢ T / external forgery

3: (v,L) < proc(ST[ID],m)

4:
5
6
7

if Crorgery
forged < true / successful forgery

return b / adversary wins

: else return L

hasUpdstq hasUpd.qm

18



Protocols for Secure Administration

We introduce IAS (Individual Admin Signatures) and DGS (Dynamic Group Signature).

= Modular.
= Authenticate administrators (with different efficiency trade-offs).
= Allow for admin key refresh for PCS and FS.

19



Individual Admin Signatures (1AS)

= We construct A-CGKA on top of any CGKA.
= Based on signatures. 20



IDs

G

= {spky, spka}

= Admins have individual signature key pairs (ssk, spk).
= Users keep an admin list L. 21



IAS: Add Participant

IDs

L = {spky, spka}

= Admin signs commit T with ssk; — o7.
= Users verify o1 with spky from L. 22



= |AS is simple and efficient!

23



= |AS is simple and efficient!

= We prove IAS secure in our model.

23



= |AS is simple and efficient!
= We prove IAS secure in our model.

= (Informal:) For an adversary that makes at most g oracle queries, 1AS is
(q-€F +ecoka + q° - esig)-secure for PRF F, CGKA CGKA and SUF-CMA

signature scheme Sig.

23



= |AS is simple and efficient!
= We prove IAS secure in our model.

= (Informal:) For an adversary that makes at most g oracle queries, 1AS is
(q-€F +ecoka + q° - esig)-secure for PRF F, CGKA CGKA and SUF-CMA

signature scheme Sig.

= Can use forward-secure signatures for better (optimal) forward security.

23



Dynamic Group Signature (DGS)

= In DGS, all admins in G* use the same signature key pair.
= Built from two CGKAs: the core CGKA CGKA and the admin CGKA CGKA*. 24



D,

CGKA(G*) — I — (ssk, spk)

G*

= Admin operations are managed through G*.

= New admin public keys spk are signed under the old key. ,
5



= (Conceptually) simple.

26



= (Conceptually) simple.

= Can use different core and admin CGKAs.

26



= (Conceptually) simple.
= Can use different core and admin CGKAs.

= Could be useful for avoiding MLS's robustness issues in the admin CGKA.

26



= (Conceptually) simple.
= Can use different core and admin CGKAs.
= Could be useful for avoiding MLS's robustness issues in the admin CGKA.

= The admins can be private depending on the admin CGKA.

26



= (Conceptually) simple.
Can use different core and admin CGKAs.
= Could be useful for avoiding MLS's robustness issues in the admin CGKA.

= The admins can be private depending on the admin CGKA.
= We prove security assuming the underlying CGKAs are secure in the ROM.

26



= (Conceptually) simple.
= Can use different core and admin CGKAs.

= Could be useful for avoiding MLS's robustness issues in the admin CGKA.
= The admins can be private depending on the admin CGKA.
= We prove security assuming the underlying CGKAs are secure in the ROM.

= (Informal:) For an adversary that makes at most q/qro oracle/RO queries, DGS is
(q-€F+€cGrkA+ G- €Sig+ G- QRO - €cgha* + q - 2*)‘)—secure for PRF F, RO H
CGKA CGKA and SUF-CMA signature scheme Sig.

26



Practical Administration for MLS

We also integrate an I1AS-based solution into MLS:

27



Practical Administration for MLS

We also integrate an I1AS-based solution into MLS:

= Leverages MLS’ key credentials.

27



Practical Administration for MLS

We also integrate an I1AS-based solution into MLS:

= Leverages MLS’ key credentials.
= Extended proposal types.

27



Practical Administration for MLS

We also integrate an I1AS-based solution into MLS:

= Leverages MLS’ key credentials.
= Extended proposal types.

= Could be integrated as an MLS extension.

27



Practical Administration for MLS

We also integrate an I1AS-based solution into MLS:

= Leverages MLS’ key credentials.

Extended proposal types.

= Could be integrated as an MLS extension.
= Minimal overhead (from benchmarking):

= We forked CISCO’s golang MLS implementation.
= Benchmarking setup: 11th Gen Intel i5-1135G7, 16GB RAM.
= Operations are executed by a single party.

27



Benchmarking (commits)

351 —— commit only /j 2501 com + upd A
----- commit only (baseline) 7 ----- com + upd (baseline) yd
30 / 22.5 Y
—— com + upd / com + adm-upd &
e com + upd (baseline) / 20.0{ ——" com + both upds ~
P com + adm-upd / = //’
£ 50l ——- com + both upds / B g175 ’
z " 2150
15.
=15 (=
10 1254 7
5 10.0
o 75{ =
8 16 32 64 128 0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Group size Number of updates (admin updates)

= upd: |G|/4 updates; adm-upd: |G|/8 admin updates.
» Less than 20% overhead when |G| /8 admins update simultaneously.
= Additional communication < 3% for |G| = 128 members.

= Overhead comes from admins performing CGKA updates. 28



Remarks on Performance

= |AS admin overhead:

= Admin proposal: key pair generation and signing.
= Commit and process: verifying < |G*| signatures.
= In MLS messages are signed anyway!

29



Remarks on Performance

= |AS admin overhead:
= Admin proposal: key pair generation and signing.
= Commit and process: verifying < |G*| signatures.
= In MLS messages are signed anyway!

= DGS admin overhead:

= Depends on the admin CGKA; can be up to linear in |G*|.
= Generally efficient for standard users: admin-only commits could be just a new public
key and signature verification if commits are splittable.

29



Remarks on Performance

= |AS admin overhead:
= Admin proposal: key pair generation and signing.
= Commit and process: verifying < |G*| signatures.
= In MLS messages are signed anyway!

= DGS admin overhead:

= Depends on the admin CGKA; can be up to linear in |G*|.
= Generally efficient for standard users: admin-only commits could be just a new public
key and signature verification if commits are splittable.

= Admin operations may be less frequent than regular ones.

29



Remarks on Performance

= |AS admin overhead:

= Admin proposal: key pair generation and signing.
= Commit and process: verifying < |G*| signatures.
= In MLS messages are signed anyway!

= DGS admin overhead:

= Depends on the admin CGKA; can be up to linear in |G*|.
= Generally efficient for standard users: admin-only commits could be just a new public
key and signature verification if commits are splittable.

= Admin operations may be less frequent than regular ones.

= Forward-secure signatures: constant asymptotic overhead but non-standard.

29



Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

= Admins beyond CGKA.
= Signal private group system [CPZ20]

30



Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

= Admins beyond CGKA.
= Signal private group system [CPZ20]

= Private admins.

30



Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:
= Admins beyond CGKA.
= Signal private group system [CPZ20]
= Private admins.

= External admins.

30



Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:
= Admins beyond CGKA.
= Signal private group system [CPZ20]
= Private admins.
= External admins.

= Threshold admins.

30



Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

= Admins beyond CGKA.
= Signal private group system [CPZ20]

Private admins.
= External admins.

= Threshold admins.

Advanced admins:

30



Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

= Admins beyond CGKA.
= Signal private group system [CPZ20]

Private admins.
= External admins.

= Threshold admins.

Advanced admins:

= Muting admins.

30



Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

= Admins beyond CGKA.
= Signal private group system [CPZ20]

Private admins.
= External admins.

= Threshold admins.

Advanced admins:

= Muting admins.
= Hierarchical admins.

30



Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:
= Admins beyond CGKA.
= Signal private group system [CPZ20]
= Private admins.
= External admins.

= Threshold admins.
= Advanced admins:

= Muting admins.
= Hierarchical admins.

= Preventing insider attacks with trusted admins.

30



Conclusion

= Securing membership is essential in
group messaging security.

= We treat cryptographic
administration as a first-class
(provable) security property.

= Can be implemented with small
overhead.

= Modular solutions readily compatible
with CGKAs and MLS.

31


ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

Conclusion

Thank you!

= Securing membership is essential in
group messaging security.

= We treat cryptographic
administration as a first-class
(provable) security property.

= Can be implemented with small

overhead.
» Modular solutions readily compatible ia.cr/2022/1411
with CGKAs and MLS. david.balbas@imdea.org

daniel.collins@epfl.ch

31


ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

Backup Slides

Some additional slides follow.

32



Benchmarking (process)

20l ™ commit only 1 17.51 — com + upd A
----- commit only (baseline) / ----- com + upd (baseline) ‘,-’4
—— com + upd /7 15.0 com + adm-upd /"
15] com + upd (baseline) ',-’ 1 ——=- com + both upds //'
T e com + adm-upd /7 125
2 ——- com + both upds / g 100
g1 ‘ g
[ E 75
-
5 5.0
25
0
8 16 32 64 128 0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Group size Number of updates (admin updates)

= Comparable behaviour to commits.

33



= We assume an incorruptible PKI.

= This follows previous work, except [AJM22] and [ACDT21] that allow malicious key
uploads.

= Naturally, no security guarantees can be provided for users associated with these
keys.

= All users always are assumed to share the same view of the PKI in all works we are
aware of.

34



	Group Messaging

