
Cryptographic Administration for Secure Group Messaging

David Balbás∗†, Daniel Collins‡, Serge Vaudenay‡

∗IMDEA Software Institute, Madrid, Spain
†Universidad Politécnica de Madrid, Spain
‡EPFL, Lausanne, Switzerland

Swiss Crypto Day, 8th September 2023

(USENIX Security ’23... thank you David for your slides!)

1

Group Messaging?

2

3

3

3

Group membership?

Insecure group membership is a common design flaw in messaging.

Servers, and sometimes even users, may mount attacks on group management.

• Burgle into the group [RMS18]

• Censorship [BCG23]

• ...

4

Burgle into the Group Attack

• Reported by [RMS18] and affects WhatsApp groups.

• In messaging apps, a server (Meta) fowards messages between users.
• Suppose A is the group administrator and wants to add B to group G .
• To do so, A sends a message M = (A, G , nameA, IDm, tm, m = {add, B}) to the

server.
• The server then forwards it to all users.
• Problem: M is not authenticated by A!
• The server can trivially send (A, ..., m = {add, C}) instead!

5

Burgle into the Group Attack

• Reported by [RMS18] and affects WhatsApp groups.
• In messaging apps, a server (Meta) fowards messages between users.

• Suppose A is the group administrator and wants to add B to group G .
• To do so, A sends a message M = (A, G , nameA, IDm, tm, m = {add, B}) to the

server.
• The server then forwards it to all users.
• Problem: M is not authenticated by A!
• The server can trivially send (A, ..., m = {add, C}) instead!

5

Burgle into the Group Attack

• Reported by [RMS18] and affects WhatsApp groups.
• In messaging apps, a server (Meta) fowards messages between users.
• Suppose A is the group administrator and wants to add B to group G .

• To do so, A sends a message M = (A, G , nameA, IDm, tm, m = {add, B}) to the
server.

• The server then forwards it to all users.
• Problem: M is not authenticated by A!
• The server can trivially send (A, ..., m = {add, C}) instead!

5

Burgle into the Group Attack

• Reported by [RMS18] and affects WhatsApp groups.
• In messaging apps, a server (Meta) fowards messages between users.
• Suppose A is the group administrator and wants to add B to group G .
• To do so, A sends a message M = (A, G , nameA, IDm, tm, m = {add, B}) to the

server.

• The server then forwards it to all users.
• Problem: M is not authenticated by A!
• The server can trivially send (A, ..., m = {add, C}) instead!

5

Burgle into the Group Attack

• Reported by [RMS18] and affects WhatsApp groups.
• In messaging apps, a server (Meta) fowards messages between users.
• Suppose A is the group administrator and wants to add B to group G .
• To do so, A sends a message M = (A, G , nameA, IDm, tm, m = {add, B}) to the

server.
• The server then forwards it to all users.

• Problem: M is not authenticated by A!
• The server can trivially send (A, ..., m = {add, C}) instead!

5

Burgle into the Group Attack

• Reported by [RMS18] and affects WhatsApp groups.
• In messaging apps, a server (Meta) fowards messages between users.
• Suppose A is the group administrator and wants to add B to group G .
• To do so, A sends a message M = (A, G , nameA, IDm, tm, m = {add, B}) to the

server.
• The server then forwards it to all users.
• Problem: M is not authenticated by A!

• The server can trivially send (A, ..., m = {add, C}) instead!

5

Burgle into the Group Attack

• Reported by [RMS18] and affects WhatsApp groups.
• In messaging apps, a server (Meta) fowards messages between users.
• Suppose A is the group administrator and wants to add B to group G .
• To do so, A sends a message M = (A, G , nameA, IDm, tm, m = {add, B}) to the

server.
• The server then forwards it to all users.
• Problem: M is not authenticated by A!
• The server can trivially send (A, ..., m = {add, C}) instead!

5

Group Administration?

How meaningful is security if users can’t trust/control group membership?

Can we build an efficient solution for users to administrate groups securely?

6

Group Administration?

How meaningful is security if users can’t trust/control group membership?

Can we build an efficient solution for users to administrate groups securely?

6

This Work and Talk

• New formalism for groups (based on continuous group key agreement) with
cryptographic administrators.

• Correctness and security notions matching modern messaging standards (forward
security, post-compromise security).

• Two modular, provably-secure constructions, IAS and DGS.
• Efficient integration with MLS, benchmarking, and admin extensions.

7

This Work and Talk

• New formalism for groups (based on continuous group key agreement) with
cryptographic administrators.

• Correctness and security notions matching modern messaging standards (forward
security, post-compromise security).

• Two modular, provably-secure constructions, IAS and DGS.
• Efficient integration with MLS, benchmarking, and admin extensions.

7

This Work and Talk

• New formalism for groups (based on continuous group key agreement) with
cryptographic administrators.

• Correctness and security notions matching modern messaging standards (forward
security, post-compromise security).

• Two modular, provably-secure constructions, IAS and DGS.

• Efficient integration with MLS, benchmarking, and admin extensions.

7

This Work and Talk

• New formalism for groups (based on continuous group key agreement) with
cryptographic administrators.

• Correctness and security notions matching modern messaging standards (forward
security, post-compromise security).

• Two modular, provably-secure constructions, IAS and DGS.
• Efficient integration with MLS, benchmarking, and admin extensions.

7

Group Messaging

Group Administration?

• Many features in
practice!

• In this talk: only
admins should be
able to add and
remove users (and
admins).

8

Group Administration?

• Many features in
practice!

• In this talk: only
admins should be
able to add and
remove users (and
admins).

8

Group Administration?

• Many features in
practice!

• In this talk: only
admins should be
able to add and
remove users (and
admins).

8

Security of Group Messaging

• As usual: confidentiality, authentication, integrity.

• Forward security (FS): past messages safe after compromise.
• Post-compromise security (PCS): self-healing via key updates.

• Security game: A controls network, can expose users [ACDT20, KPWK+21].
• Group dynamics: cryptographic adds and removes from group G .
• Administration: only admins G∗ ⊆ G can make group changes.

9

Security of Group Messaging

• As usual: confidentiality, authentication, integrity.
• Forward security (FS): past messages safe after compromise.
• Post-compromise security (PCS): self-healing via key updates.

• Security game: A controls network, can expose users [ACDT20, KPWK+21].
• Group dynamics: cryptographic adds and removes from group G .
• Administration: only admins G∗ ⊆ G can make group changes.

9

Security of Group Messaging

• As usual: confidentiality, authentication, integrity.
• Forward security (FS): past messages safe after compromise.
• Post-compromise security (PCS): self-healing via key updates.

• Security game: A controls network, can expose users [ACDT20, KPWK+21].

• Group dynamics: cryptographic adds and removes from group G .
• Administration: only admins G∗ ⊆ G can make group changes.

9

Security of Group Messaging

• As usual: confidentiality, authentication, integrity.
• Forward security (FS): past messages safe after compromise.
• Post-compromise security (PCS): self-healing via key updates.

• Security game: A controls network, can expose users [ACDT20, KPWK+21].
• Group dynamics: cryptographic adds and removes from group G .

• Administration: only admins G∗ ⊆ G can make group changes.

9

Security of Group Messaging

• As usual: confidentiality, authentication, integrity.
• Forward security (FS): past messages safe after compromise.
• Post-compromise security (PCS): self-healing via key updates.

• Security game: A controls network, can expose users [ACDT20, KPWK+21].
• Group dynamics: cryptographic adds and removes from group G .
• Administration: only admins G∗ ⊆ G can make group changes.

9

Towards MLS (Message Layer Security)

Existing group messaging protocols:
• Pairwise two-party channels: O(n)

sender communication.

• Sender Keys (WhatsApp, Signal, ...):
O(1) sender communication.

• Both have O(n2) communication for
full key refreshes!

• Cannot easily scale to 1000s of users.

MLS:
• O(log n) fair-weather sender

communication for key updates.
• Recently became IETF RFC 9420.
• Many features; a complex standard.
• Interest from academia and industry.

10

Towards MLS (Message Layer Security)

Existing group messaging protocols:
• Pairwise two-party channels: O(n)

sender communication.
• Sender Keys (WhatsApp, Signal, ...):

O(1) sender communication.

• Both have O(n2) communication for
full key refreshes!

• Cannot easily scale to 1000s of users.

MLS:
• O(log n) fair-weather sender

communication for key updates.
• Recently became IETF RFC 9420.
• Many features; a complex standard.
• Interest from academia and industry.

10

Towards MLS (Message Layer Security)

Existing group messaging protocols:
• Pairwise two-party channels: O(n)

sender communication.
• Sender Keys (WhatsApp, Signal, ...):

O(1) sender communication.
• Both have O(n2) communication for

full key refreshes!

• Cannot easily scale to 1000s of users.

MLS:
• O(log n) fair-weather sender

communication for key updates.
• Recently became IETF RFC 9420.
• Many features; a complex standard.
• Interest from academia and industry.

10

Towards MLS (Message Layer Security)

Existing group messaging protocols:
• Pairwise two-party channels: O(n)

sender communication.
• Sender Keys (WhatsApp, Signal, ...):

O(1) sender communication.
• Both have O(n2) communication for

full key refreshes!
• Cannot easily scale to 1000s of users.

MLS:
• O(log n) fair-weather sender

communication for key updates.
• Recently became IETF RFC 9420.
• Many features; a complex standard.
• Interest from academia and industry.

10

Towards MLS (Message Layer Security)

Existing group messaging protocols:
• Pairwise two-party channels: O(n)

sender communication.
• Sender Keys (WhatsApp, Signal, ...):

O(1) sender communication.
• Both have O(n2) communication for

full key refreshes!
• Cannot easily scale to 1000s of users.

MLS:
• O(log n) fair-weather sender

communication for key updates.

• Recently became IETF RFC 9420.
• Many features; a complex standard.
• Interest from academia and industry.

10

Towards MLS (Message Layer Security)

Existing group messaging protocols:
• Pairwise two-party channels: O(n)

sender communication.
• Sender Keys (WhatsApp, Signal, ...):

O(1) sender communication.
• Both have O(n2) communication for

full key refreshes!
• Cannot easily scale to 1000s of users.

MLS:
• O(log n) fair-weather sender

communication for key updates.
• Recently became IETF RFC 9420.

• Many features; a complex standard.
• Interest from academia and industry.

10

Towards MLS (Message Layer Security)

Existing group messaging protocols:
• Pairwise two-party channels: O(n)

sender communication.
• Sender Keys (WhatsApp, Signal, ...):

O(1) sender communication.
• Both have O(n2) communication for

full key refreshes!
• Cannot easily scale to 1000s of users.

MLS:
• O(log n) fair-weather sender

communication for key updates.
• Recently became IETF RFC 9420.
• Many features; a complex standard.

• Interest from academia and industry.

10

Towards MLS (Message Layer Security)

Existing group messaging protocols:
• Pairwise two-party channels: O(n)

sender communication.
• Sender Keys (WhatsApp, Signal, ...):

O(1) sender communication.
• Both have O(n2) communication for

full key refreshes!
• Cannot easily scale to 1000s of users.

MLS:
• O(log n) fair-weather sender

communication for key updates.
• Recently became IETF RFC 9420.
• Many features; a complex standard.
• Interest from academia and industry.

10

Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals and
users then process the commit.

• Can build group messaging using I
(KEM/DEM-style with signatures for
example).

CGKA (simplified):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

11

Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals and
users then process the commit.

• Can build group messaging using I
(KEM/DEM-style with signatures for
example).

CGKA (simplified):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

11

Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals and
users then process the commit.

• Can build group messaging using I
(KEM/DEM-style with signatures for
example).

CGKA (simplified):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

11

Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals and
users then process the commit.

• Can build group messaging using I
(KEM/DEM-style with signatures for
example).

CGKA (simplified):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

11

Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals and
users then process the commit.

• Can build group messaging using I
(KEM/DEM-style with signatures for
example).

CGKA (simplified):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

11

Key Agreement: (A-)CGKA

Recently popular formalism: Continuous Group Key Agreement (CGKA) [ACDT20].
Forms the basis of MLS (as TreeKEM).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].

• Later, ID′ commits several proposals and
users then process the commit.

• Can build group messaging using I
(KEM/DEM-style with signatures for
example).

CGKA (simplified):

• Init(1λ, ID)
• Create(G) → T
• Prop(ID, type) → P
• Commit(P⃗) → T
• Proc(T) → I ′

11

CGKA: Create

• ID1 creates a group G = {ID1, ID2, ID3, ID4}.

12

CGKA: Proposals

• ID2 and ID3 propose changes.

13

CGKA: Commit

• ID2 commits both proposals.

14

CGKA: Process Changes

• The group evolves to a new epoch and I ′ is refreshed.

15

Key Agreement: (A-)CGKA

Administrated Continuous Group Key Agreement (A-CGKA).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].
A-CGKA includes new proposal types:
add/remove/update admin.

• Later, ID′ commits several proposals and
users then process the commit.

A-CGKA (simplified):

• Init(1λ, ID)
• Create(G , G∗) → T
• Prop(ID, type) → P
• Commit(P⃗, com-type) → T
• Proc(T) → I ′

Administration security: Non-admins cannot commit (except updates and
self-removes).

16

Key Agreement: (A-)CGKA

Administrated Continuous Group Key Agreement (A-CGKA).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].
A-CGKA includes new proposal types:
add/remove/update admin.

• Later, ID′ commits several proposals and
users then process the commit.

A-CGKA (simplified):

• Init(1λ, ID)
• Create(G , G∗) → T
• Prop(ID, type) → P
• Commit(P⃗, com-type) → T
• Proc(T) → I ′

Administration security: Non-admins cannot commit (except updates and
self-removes).

16

Key Agreement: (A-)CGKA

Administrated Continuous Group Key Agreement (A-CGKA).

• Dynamic secret I known to members.

• Members ID propose adds, removals, and
key updates [AJM20, RFC9420].
A-CGKA includes new proposal types:
add/remove/update admin.

• Later, ID′ commits several proposals and
users then process the commit.

A-CGKA (simplified):

• Init(1λ, ID)
• Create(G , G∗) → T
• Prop(ID, type) → P
• Commit(P⃗, com-type) → T
• Proc(T) → I ′

Administration security: Non-admins cannot commit (except updates and
self-removes). 16

A-CGKA Correctness

• All users who transition to the same
epoch have the same view of the group
and key.

• Only Proc modifies the group and key.
• Proc has its intended effect.
• Admins always form a non-empty

subset of the group.

17

A-CGKA Correctness

• All users who transition to the same
epoch have the same view of the group
and key.

• Only Proc modifies the group and key.
• Proc has its intended effect.
• Admins always form a non-empty

subset of the group.

17

A-CGKA Correctness

• All users who transition to the same
epoch have the same view of the group
and key.

• Only Proc modifies the group and key.

• Proc has its intended effect.
• Admins always form a non-empty

subset of the group.

17

A-CGKA Correctness

• All users who transition to the same
epoch have the same view of the group
and key.

• Only Proc modifies the group and key.
• Proc has its intended effect.

• Admins always form a non-empty
subset of the group.

17

A-CGKA Correctness

• All users who transition to the same
epoch have the same view of the group
and key.

• Only Proc modifies the group and key.
• Proc has its intended effect.
• Admins always form a non-empty

subset of the group.

17

A-CGKA Correctness

• All users who transition to the same
epoch have the same view of the group
and key.

• Only Proc modifies the group and key.
• Proc has its intended effect.
• Admins always form a non-empty

subset of the group.

17

A-CGKA Correctness

• All users who transition to the same
epoch have the same view of the group
and key.

• Only Proc modifies the group and key.
• Proc has its intended effect.
• Admins always form a non-empty

subset of the group.

17

A-CGKA Correctness

• All users who transition to the same
epoch have the same view of the group
and key.

• Only Proc modifies the group and key.
• Proc has its intended effect.
• Admins always form a non-empty

subset of the group.

17

A-CGKA Security

• A key indistinguishability game.
• Formally captured in cleanness

predicates.
• Cannot inject commits even if

non-admins are corrupted (except for
non-admin updates and self-removes).

• Security is restored after compromised
users (and admins) update or are
removed (PCS).

18

A-CGKA Security

• A key indistinguishability game.

• Formally captured in cleanness
predicates.

• Cannot inject commits even if
non-admins are corrupted (except for
non-admin updates and self-removes).

• Security is restored after compromised
users (and admins) update or are
removed (PCS).

18

A-CGKA Security

• A key indistinguishability game.
• Formally captured in cleanness

predicates.

• Cannot inject commits even if
non-admins are corrupted (except for
non-admin updates and self-removes).

• Security is restored after compromised
users (and admins) update or are
removed (PCS).

18

A-CGKA Security

• A key indistinguishability game.
• Formally captured in cleanness

predicates.
• Cannot inject commits even if

non-admins are corrupted (except for
non-admin updates and self-removes).

• Security is restored after compromised
users (and admins) update or are
removed (PCS).

18

A-CGKA Security

• A key indistinguishability game.
• Formally captured in cleanness

predicates.
• Cannot inject commits even if

non-admins are corrupted (except for
non-admin updates and self-removes).

• Security is restored after compromised
users (and admins) update or are
removed (PCS).

18

A-CGKA Security

• A key indistinguishability game.
• Formally captured in cleanness

predicates.
• Cannot inject commits even if

non-admins are corrupted (except for
non-admin updates and self-removes).

• Security is restored after compromised
users (and admins) update or are
removed (PCS).

18

A-CGKA Security

• A key indistinguishability game.
• Formally captured in cleanness

predicates.
• Cannot inject commits even if

non-admins are corrupted (except for
non-admin updates and self-removes).

• Security is restored after compromised
users (and admins) update or are
removed (PCS).

18

A-CGKA Security

• A key indistinguishability game.
• Formally captured in cleanness

predicates.
• Cannot inject commits even if

non-admins are corrupted (except for
non-admin updates and self-removes).

• Security is restored after compromised
users (and admins) update or are
removed (PCS).

18

Protocols for Secure Administration

We introduce IAS (Individual Admin Signatures) and DGS (Dynamic Group Signature).

• Modular.
• Authenticate administrators (with different efficiency trade-offs).
• Allow for admin key refresh for PCS and FS.

19

Individual Admin Signatures (IAS)

• We construct A-CGKA on top of any CGKA.
• Based on signatures. 20

IAS

• Admins have individual signature key pairs (ssk, spk).
• Users keep an admin list L. 21

IAS: Add Participant

• Admin signs commit T with ssk1 −→ σT .
• Users verify σT with spk1 from L. 22

On IAS

• IAS is simple and efficient!

• We prove IAS secure in our model.
• (Informal:) For an adversary that makes at most q oracle queries, IAS is

(q · ϵF + ϵCGKA + q2 · ϵSig)-secure for PRF F , CGKA CGKA and SUF-CMA
signature scheme Sig .

• Can use forward-secure signatures for better (optimal) forward security.

23

On IAS

• IAS is simple and efficient!
• We prove IAS secure in our model.

• (Informal:) For an adversary that makes at most q oracle queries, IAS is
(q · ϵF + ϵCGKA + q2 · ϵSig)-secure for PRF F , CGKA CGKA and SUF-CMA
signature scheme Sig .

• Can use forward-secure signatures for better (optimal) forward security.

23

On IAS

• IAS is simple and efficient!
• We prove IAS secure in our model.
• (Informal:) For an adversary that makes at most q oracle queries, IAS is

(q · ϵF + ϵCGKA + q2 · ϵSig)-secure for PRF F , CGKA CGKA and SUF-CMA
signature scheme Sig .

• Can use forward-secure signatures for better (optimal) forward security.

23

On IAS

• IAS is simple and efficient!
• We prove IAS secure in our model.
• (Informal:) For an adversary that makes at most q oracle queries, IAS is

(q · ϵF + ϵCGKA + q2 · ϵSig)-secure for PRF F , CGKA CGKA and SUF-CMA
signature scheme Sig .

• Can use forward-secure signatures for better (optimal) forward security.

23

Dynamic Group Signature (DGS)

• In DGS, all admins in G∗ use the same signature key pair.
• Built from two CGKAs: the core CGKA CGKA and the admin CGKA CGKA∗. 24

DGS

• Admin operations are managed through G∗.
• New admin public keys spk are signed under the old key.

25

On DGS

• (Conceptually) simple.

• Can use different core and admin CGKAs.
• Could be useful for avoiding MLS’s robustness issues in the admin CGKA.

• The admins can be private depending on the admin CGKA.
• We prove security assuming the underlying CGKAs are secure in the ROM.
• (Informal:) For an adversary that makes at most q/qRO oracle/RO queries, DGS is

(q · ϵF + ϵCGKA + q · ϵSig + q · qRO · ϵcgka∗ + q · 2−λ)-secure for PRF F , RO H
CGKA CGKA and SUF-CMA signature scheme Sig .

26

On DGS

• (Conceptually) simple.
• Can use different core and admin CGKAs.

• Could be useful for avoiding MLS’s robustness issues in the admin CGKA.

• The admins can be private depending on the admin CGKA.
• We prove security assuming the underlying CGKAs are secure in the ROM.
• (Informal:) For an adversary that makes at most q/qRO oracle/RO queries, DGS is

(q · ϵF + ϵCGKA + q · ϵSig + q · qRO · ϵcgka∗ + q · 2−λ)-secure for PRF F , RO H
CGKA CGKA and SUF-CMA signature scheme Sig .

26

On DGS

• (Conceptually) simple.
• Can use different core and admin CGKAs.

• Could be useful for avoiding MLS’s robustness issues in the admin CGKA.

• The admins can be private depending on the admin CGKA.
• We prove security assuming the underlying CGKAs are secure in the ROM.
• (Informal:) For an adversary that makes at most q/qRO oracle/RO queries, DGS is

(q · ϵF + ϵCGKA + q · ϵSig + q · qRO · ϵcgka∗ + q · 2−λ)-secure for PRF F , RO H
CGKA CGKA and SUF-CMA signature scheme Sig .

26

On DGS

• (Conceptually) simple.
• Can use different core and admin CGKAs.

• Could be useful for avoiding MLS’s robustness issues in the admin CGKA.

• The admins can be private depending on the admin CGKA.

• We prove security assuming the underlying CGKAs are secure in the ROM.
• (Informal:) For an adversary that makes at most q/qRO oracle/RO queries, DGS is

(q · ϵF + ϵCGKA + q · ϵSig + q · qRO · ϵcgka∗ + q · 2−λ)-secure for PRF F , RO H
CGKA CGKA and SUF-CMA signature scheme Sig .

26

On DGS

• (Conceptually) simple.
• Can use different core and admin CGKAs.

• Could be useful for avoiding MLS’s robustness issues in the admin CGKA.

• The admins can be private depending on the admin CGKA.
• We prove security assuming the underlying CGKAs are secure in the ROM.

• (Informal:) For an adversary that makes at most q/qRO oracle/RO queries, DGS is
(q · ϵF + ϵCGKA + q · ϵSig + q · qRO · ϵcgka∗ + q · 2−λ)-secure for PRF F , RO H
CGKA CGKA and SUF-CMA signature scheme Sig .

26

On DGS

• (Conceptually) simple.
• Can use different core and admin CGKAs.

• Could be useful for avoiding MLS’s robustness issues in the admin CGKA.

• The admins can be private depending on the admin CGKA.
• We prove security assuming the underlying CGKAs are secure in the ROM.
• (Informal:) For an adversary that makes at most q/qRO oracle/RO queries, DGS is

(q · ϵF + ϵCGKA + q · ϵSig + q · qRO · ϵcgka∗ + q · 2−λ)-secure for PRF F , RO H
CGKA CGKA and SUF-CMA signature scheme Sig .

26

Practical Administration for MLS

We also integrate an IAS-based solution into MLS:

• Leverages MLS’ key credentials.
• Extended proposal types.
• Could be integrated as an MLS extension.
• Minimal overhead (from benchmarking):

• We forked CISCO’s golang MLS implementation.
• Benchmarking setup: 11th Gen Intel i5-1135G7, 16GB RAM.
• Operations are executed by a single party.

27

Practical Administration for MLS

We also integrate an IAS-based solution into MLS:

• Leverages MLS’ key credentials.

• Extended proposal types.
• Could be integrated as an MLS extension.
• Minimal overhead (from benchmarking):

• We forked CISCO’s golang MLS implementation.
• Benchmarking setup: 11th Gen Intel i5-1135G7, 16GB RAM.
• Operations are executed by a single party.

27

Practical Administration for MLS

We also integrate an IAS-based solution into MLS:

• Leverages MLS’ key credentials.
• Extended proposal types.

• Could be integrated as an MLS extension.
• Minimal overhead (from benchmarking):

• We forked CISCO’s golang MLS implementation.
• Benchmarking setup: 11th Gen Intel i5-1135G7, 16GB RAM.
• Operations are executed by a single party.

27

Practical Administration for MLS

We also integrate an IAS-based solution into MLS:

• Leverages MLS’ key credentials.
• Extended proposal types.
• Could be integrated as an MLS extension.

• Minimal overhead (from benchmarking):
• We forked CISCO’s golang MLS implementation.
• Benchmarking setup: 11th Gen Intel i5-1135G7, 16GB RAM.
• Operations are executed by a single party.

27

Practical Administration for MLS

We also integrate an IAS-based solution into MLS:

• Leverages MLS’ key credentials.
• Extended proposal types.
• Could be integrated as an MLS extension.
• Minimal overhead (from benchmarking):

• We forked CISCO’s golang MLS implementation.
• Benchmarking setup: 11th Gen Intel i5-1135G7, 16GB RAM.
• Operations are executed by a single party.

27

Benchmarking (commits)

8 16 32 64 128
Group size

0

5

10

15

20

25

30

35
Ti

m
e

(m
s)

commit only
commit only (baseline)
com + upd
com + upd (baseline)
com + adm-upd
com + both upds

0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Number of updates (admin updates)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ti
m

e
(m

s)

com + upd
com + upd (baseline)
com + adm-upd
com + both upds

• upd: |G |/4 updates; adm-upd: |G |/8 admin updates.
• Less than 20% overhead when |G | /8 admins update simultaneously.
• Additional communication < 3% for |G | = 128 members.
• Overhead comes from admins performing CGKA updates. 28

Remarks on Performance

• IAS admin overhead:
• Admin proposal: key pair generation and signing.
• Commit and process: verifying ≤ |G∗| signatures.
• In MLS messages are signed anyway!

• DGS admin overhead:
• Depends on the admin CGKA; can be up to linear in |G∗|.
• Generally efficient for standard users: admin-only commits could be just a new public

key and signature verification if commits are splittable.

• Admin operations may be less frequent than regular ones.
• Forward-secure signatures: constant asymptotic overhead but non-standard.

29

Remarks on Performance

• IAS admin overhead:
• Admin proposal: key pair generation and signing.
• Commit and process: verifying ≤ |G∗| signatures.
• In MLS messages are signed anyway!

• DGS admin overhead:
• Depends on the admin CGKA; can be up to linear in |G∗|.
• Generally efficient for standard users: admin-only commits could be just a new public

key and signature verification if commits are splittable.

• Admin operations may be less frequent than regular ones.
• Forward-secure signatures: constant asymptotic overhead but non-standard.

29

Remarks on Performance

• IAS admin overhead:
• Admin proposal: key pair generation and signing.
• Commit and process: verifying ≤ |G∗| signatures.
• In MLS messages are signed anyway!

• DGS admin overhead:
• Depends on the admin CGKA; can be up to linear in |G∗|.
• Generally efficient for standard users: admin-only commits could be just a new public

key and signature verification if commits are splittable.

• Admin operations may be less frequent than regular ones.

• Forward-secure signatures: constant asymptotic overhead but non-standard.

29

Remarks on Performance

• IAS admin overhead:
• Admin proposal: key pair generation and signing.
• Commit and process: verifying ≤ |G∗| signatures.
• In MLS messages are signed anyway!

• DGS admin overhead:
• Depends on the admin CGKA; can be up to linear in |G∗|.
• Generally efficient for standard users: admin-only commits could be just a new public

key and signature verification if commits are splittable.

• Admin operations may be less frequent than regular ones.
• Forward-secure signatures: constant asymptotic overhead but non-standard.

29

Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

• Admins beyond CGKA.
• Signal private group system [CPZ20]

• Private admins.
• External admins.
• Threshold admins.
• Advanced admins:

• Muting admins.
• Hierarchical admins.

• Preventing insider attacks with trusted admins.

30

Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

• Admins beyond CGKA.
• Signal private group system [CPZ20]

• Private admins.

• External admins.
• Threshold admins.
• Advanced admins:

• Muting admins.
• Hierarchical admins.

• Preventing insider attacks with trusted admins.

30

Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

• Admins beyond CGKA.
• Signal private group system [CPZ20]

• Private admins.
• External admins.

• Threshold admins.
• Advanced admins:

• Muting admins.
• Hierarchical admins.

• Preventing insider attacks with trusted admins.

30

Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

• Admins beyond CGKA.
• Signal private group system [CPZ20]

• Private admins.
• External admins.
• Threshold admins.

• Advanced admins:
• Muting admins.
• Hierarchical admins.

• Preventing insider attacks with trusted admins.

30

Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

• Admins beyond CGKA.
• Signal private group system [CPZ20]

• Private admins.
• External admins.
• Threshold admins.
• Advanced admins:

• Muting admins.
• Hierarchical admins.

• Preventing insider attacks with trusted admins.

30

Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

• Admins beyond CGKA.
• Signal private group system [CPZ20]

• Private admins.
• External admins.
• Threshold admins.
• Advanced admins:

• Muting admins.

• Hierarchical admins.

• Preventing insider attacks with trusted admins.

30

Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

• Admins beyond CGKA.
• Signal private group system [CPZ20]

• Private admins.
• External admins.
• Threshold admins.
• Advanced admins:

• Muting admins.
• Hierarchical admins.

• Preventing insider attacks with trusted admins.

30

Admin Extensions and Future Work

Our work serves to initiate the study of provably-secure administration:

• Admins beyond CGKA.
• Signal private group system [CPZ20]

• Private admins.
• External admins.
• Threshold admins.
• Advanced admins:

• Muting admins.
• Hierarchical admins.

• Preventing insider attacks with trusted admins.

30

Conclusion

• Securing membership is essential in
group messaging security.

• We treat cryptographic
administration as a first-class
(provable) security property.

• Can be implemented with small
overhead.

• Modular solutions readily compatible
with CGKAs and MLS.

Thank you!

ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

31

ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

Conclusion

• Securing membership is essential in
group messaging security.

• We treat cryptographic
administration as a first-class
(provable) security property.

• Can be implemented with small
overhead.

• Modular solutions readily compatible
with CGKAs and MLS.

Thank you!

ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

31

ia.cr/2022/1411
david.balbas@imdea.org
daniel.collins@epfl.ch

Backup Slides

Some additional slides follow.

32

Benchmarking (process)

8 16 32 64 128
Group size

0

5

10

15

20

Ti
m

e
(m

s)

commit only
commit only (baseline)
com + upd
com + upd (baseline)
com + adm-upd
com + both upds

0 4(2) 8(4) 12(6) 16(8) 20(10) 24(12) 28(14)
Number of updates (admin updates)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(m

s)

com + upd
com + upd (baseline)
com + adm-upd
com + both upds

• Comparable behaviour to commits.

33

On PKI

• We assume an incorruptible PKI.
• This follows previous work, except [AJM22] and [ACDT21] that allow malicious key

uploads.
• Naturally, no security guarantees can be provided for users associated with these

keys.
• All users always are assumed to share the same view of the PKI in all works we are

aware of.

34

	Group Messaging

